Mex3c regulates insulin-like growth factor 1 (IGF1) expression and promotes postnatal growth

نویسندگان

  • Yan Jiao
  • Colin E. Bishop
  • Baisong Lu
چکیده

Insulin-like growth factor 1 (IGF1) mediates the growth-promoting activities of growth hormone. How Igf1 expression is regulated posttranscriptionally is unclear. Caenorhabditis elegans muscle excess 3 (MEX-3) is involved in cell fate specification during early embryonic development through regulating mRNAs involved in specifying cell fate. The function of its mammalian homologue, MEX3C, is unknown. Here we show that MEX3C deficiency in Mex3c homozygous mutant mice causes postnatal growth retardation and background-dependent perinatal lethality. Hypertrophy of chondrocytes in growth plates is significantly impaired. Circulating and bone local production of IGF1 are both decreased in mutant mice. Mex3c mRNA is strongly expressed in the testis and the brain, and highly expressed in resting and proliferating chondrocytes of the growth plates. MEX3C is able to enrich multiple mRNA species from tissue lysates, including Igf1. Igf1 expression in bone is decreased at the protein level but not at the mRNA level, indicating translational/posttranslational regulation. We propose that MEX3C protein plays an important role in enhancing the translation of Igf1 mRNA, which explains the perinatal lethality and growth retardation observed in MEX3C-deficient mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

English as the universal language of science: opportunities and challenges

Mex3c regulates insulin-like growth factor 1 (IGF1) expression and promotes postnatal growth Y. Jiao, C. E. Bishop, and B. Lu 1404–1413 Mex3c is highly expressed in the testis, brain, and developing bone. Mex3c mutation causes postnatal growth retardation and background-dependent perinatal lethality, possibly through impairing the translation of insulin-like growth factor 1 mRNA in bone-forming...

متن کامل

Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model

Objective(s): This study aimed to determine the collagen type II (COL2) and SOX9 expression in interleukin growth factor (IGF-1)-induced Wharton’s Jelly mesenchymal stem cells (WJMSCs) and the level of chondrogenic markers in co-culture IGF1-WJMSCs and IL1β-CHON002 as osteoarthritis (OA) cells model. Materials and Methods: WJMSCs were induced with IGF1 (75, 150, and 300 ng/ml) to enhance their ...

متن کامل

Insulin-like growth factor 1 regulates developing brain glucose metabolism.

The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-(14)C]glucose uptake parallels Igf1 expression in wild-type mice and is profou...

متن کامل

Engrailed2 modulates cerebellar granule neuron precursor proliferation, differentiation and insulin-like growth factor 1 signaling during postnatal development

BACKGROUND The homeobox transcription factor Engrailed2 (En2) has been studied extensively in neurodevelopment, particularly in the midbrain/hindbrain region and cerebellum, where it exhibits dynamic patterns of expression and regulates cell patterning and morphogenesis. Because of its roles in regulating cerebellar development and evidence of cerebellar pathology in autism spectrum disorder (A...

متن کامل

Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth.

To examine the relationship between growth hormone (GH) and insulin-like growth factor 1 (IGF1) in controlling postnatal growth, we performed a comparative analysis of dwarfing phenotypes manifested in mouse mutants lacking GH receptor, IGF1, or both. This genetic study has provided conclusive evidence demonstrating that GH and IGF1 promote postnatal growth by both independent and common functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2012